Abstract

This paper shows the solution for an orthotropic disk under the plane strain condition obtained with complex stress functions. These stress functions were induced by Lekhnitskii and expanded by one of the authors. Regarding diametrical compression test, the finite element method poses difficulties in representing the concentrated force because the specimens must be divided into finite elements during calculation. On the other hand, the method shown in this study can exactly represent this force. Some numerical results are shown and compared with those obtained under the plane stress condition for both stress and displacement. This comparison shows that the differences between the tensile stresses occurred under the plane strain condition and also that the differences under a plane stress condition increase as the orthotropy ratio increases for some cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.