Abstract

We have investigated the carrier dynamics in multilevel intermediate-band solar cells (IBSCs) by solving the Poisson equation, the continuity equations of electrons and holes, and the balance equation of IBs self-consistently. The efficiencies of 6-level IBSCs have stronger dependence on the doping concentration than those of 3-level IBSCs. For non-optimal doping conditions under 1 sun, the efficiencies of 6-level IBSCs can be inferior to those of 3-level IBSCs and even single junction solar cells (i.e., 2-level IBSC). The reasons for this are that multiple IBs in 6-level IBSCs limit their ability to produce currents and the combinations of the energy bandgaps are not optimized for doping concentrations. On the other hand, at around half occupation of electrons in the IBs, the energy conversion efficiencies of IBSCs are maximized under any sun concentrations. The efficiency of 6-level IBSCs has a maximum (66% under 1000 suns) approaching the thermodynamic upper limit, which is similar to the case of 3-level IBSCs. These results indicate the importance of optimizing the doping concentrations in the IB regions of the 6-level IBSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.