Abstract
We introduce a general method which allows reconstruction of electronic band structure of nanocrystals from ordinary real-space electronic structure calculations. A comprehensive study of band structure of a realistic nanocrystal is given including full geometric and electronic relaxation with the surface passivating groups. In particular, we combine this method with large scale density functional theory calculations to obtain insight into the luminescence properties of silicon nanocrystals of up to 3 nm in size depending on the surface passivation and geometric distortion. We conclude that the band structure concept is applicable to silicon nanocrystals with diameter larger than $\approx$ 2 nm with certain limitations. We also show how perturbations due to polarized surface groups or geometric distortion can lead to considerable moderation of momentum space selection rules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.