Abstract

Photocatalysts based on mixtures of rutile and anatase forms of titania usually show a better catalytic performance than each individual component. In order to understand this behavior, several experimental and theoretical approaches have been proposed in the past, looking for an adequate reference frame for aligning energy bands, and arriving sometimes to opposite results. In this work, the theoretical results obtained for the band alignment applying a modified common anion rule for different possibilities of mixed-phase (anatase–rutile) interaction are presented. According to our results, mixed-phase systems involve the transfer of electrons from rutile to anatase and holes from anatase to rutile. This analysis would be applicable to real samples of mixed phase of titania with large particle size. However, for heterogeneous size particulate systems, it is not only necessary to consider the alignment of bands of the bulk system, but also those of the corresponding surfaces. In keeping with the analysis performed, the best mixed systems are those composed by large particles of both polymorphs or by small particles of anatase dissolved in rutile. Our results could explain the disagreement found in the literature regarding the experimental works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.