Abstract
It was a conjecture of the second author that the Cantor–Bendixson rank of the Ziegler spectrum of a finite-dimensional algebra is either less than or equal to 2 or is undefined. Here we refute this conjecture by describing the Ziegler spectra of some domestic string algebras where arbitrary finite values greater than 2 are obtained. We give a complete description of the Ziegler and Gabriel–Zariski spectra of the simplest of these algebras. The conjecture has been independently refuted by Schroer who, extending his work (1997) on these algebras, computed their Krull–Gabriel dimension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.