Abstract

BackgroundSkeletal muscle fibers are multinucleated syncytia that arise from the fusion of mononucleated precursors, the myocytes, during embryonic development, muscle hypertrophy in post-embryonic growth and muscle regeneration after injury. Even though myocyte fusion is central to skeletal muscle differentiation, our current knowledge of the molecular mechanism of myocyte fusion in the vertebrates is rather limited. Previous work, from our group and others, has shown that the zebrafish embryo is a very useful model for investigating the cell biology and genetics of vertebrate myocyte fusion in vivo. ResultsHere, we report the generation of a stable transgenic zebrafish strain that expresses the Histone 2B-GFP (H2B-GFP) fusion protein in the nuclei of all fast-twitch muscle fibers under the control of the fast-twitch muscle-specific myosin light chain, phosphorylatable, fast skeletal muscle a (mylpfa) gene promoter. By introducing this transgene into a mutant for junctional adhesion molecule 3b (jam3b), which encodes a cell adhesion protein previously implicated in myocyte fusion, we demonstrate the feasibility of using this transgene for the analysis of myocyte fusion during the differentiation of the trunk musculature of the zebrafish embryo. ConclusionsSince we know so little about the molecules regulating vertebrate myocyte fusion, we propose that the mylpfa:H2B-GFP transgene will be a very useful reporter for conducting forward and reverse genetic screens to identify new components regulating vertebrate myocyte fusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.