Abstract

The yarn size scaling of tensile and in-plane shear properties is examined for three-dimensional needled textile reinforced ceramic matrix composites (3DN CMC) fabricated by chemical vapor infiltration. The results showed that large yarn size would cause the nonwoven yarn of 3DN CMC crimp and lower composite density, resulting in decrease of tensile and in-plane shear properties. The “modified lamina modeling” was presented to predict the tensile and shear elastic moduli of 3DN CMC with different yarn size. Other two methods were also proposed to evaluate the tensile and in-plane shear strengths of 3DN CMC with different yarn size, respectively. All predicted results showed consistent well with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.