Abstract

We present the three-dimensional structure of Trichoderma reesei endoglucanase 3 (Cel12A), a small, 218 amino acid residue (24.5 kDa), neutral pI, glycoside hydrolase family 12 cellulase that lacks a cellulose-binding module. The structure has been determined using X-ray crystallography and refined to 1.9 Å resolution. The asymmetric unit consists of six non-crystallographic symmetry-related molecules that were exploited to improve initial multiple isomorphous replacement phasing, and subsequent structure refinement. The enzyme contains one disulfide bridge and is glycosylated at Asp164 by a single N-acetyl glucosamine residue. The protein has the expected fold for a glycoside hydrolase clan-C family 12 enzyme. It contains two β-sheets, of six and nine strands, packed on top of one another, and one α-helix. The concave surface of the nine-stranded β-sheet forms a large substrate-binding groove in which the active-site residues are located. In the active site, we find a carboxylic acid trio, similar to that of glycoside hydrolase families 7 and 16. The strictly conserved Asp99 hydrogen bonds to the nucleophile, the invariant Glu116. The binding crevice is lined with both aromatic and polar amino acid side-chains which may play a role in substrate binding. The structure of the fungal family 12 enzyme presented here allows a complete structural characterization of the glycoside hydrolase-C clan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.