Abstract

The X-radiolysis of water vapor containing methanol at 125 °C and 1 atm pressure has been studied alone and in the presence of some electron and hydrogen atom scavengers. In water vapor containing methanol only, a plateau value G(H2) = 7.9 ± 0.3 is obtained at all methanol concentrations above 0.5 mole %. Addition of propylene drastically reduces this yield due to efficient scavenging of hydrogen atoms, and values for the total number of H atoms from all precursors g(H)t = 7,5 ± 0.2 and [Formula: see text] are deduced from the competition. An unscavengeable hydrogen yield g(H2) ~ 0.5 is also indicated in mixtures containing propylene. Nitrous oxide and sulfur hexafluoride are found to scavenge electrons efficiently in water vapor containing methanol and the number of hydrogen atoms arising from electron–positive ion recombination is estimated to have a value G = 2.2 ± 0.6. The number of hydrogen atoms arising from processes not involving electrons is g(H) = 5.2 ± 0.3. Carbon tetrachloride reacts efficiently with both electrons and hydrogen atoms, with k(H + CH3OH)/k(H + CCl4) = 0.085. Values of g(H) = 4.9 ± 0.5 and g(H2) = 0.8 ± 0.2 are deduced from mixtures containing carbon tetrachloride.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.