Abstract
The 129Xe nuclear magnetic resonance spectrum of xenon in gas mixtures of Xe with other molecules provides a test of the ab initio surfaces for the intermolecular shielding of Xe in the presence of the other molecule. We examine the electron correlation contributions to the Xe-CO2, Xe-N2, Xe-CO, Xe-CH4, and Xe-CF4 shielding surfaces and test the calculations against the experimental temperature dependence of the density coefficients of the Xe chemical shift in the gas mixtures at infinite dilution in Xe. Comparisons with the gas phase data permit the refinement of site-site potential functions for Xe-N2, Xe-CO, and Xe-CF4 especially for atom-Xe distances in the range 3.5-6 A. With the atom-atom shielding surfaces and potential parameters obtained in the present work, construction of shielding surfaces and potentials for applications such as molecular dynamics averaging of Xe chemical shifts in liquid solvents containing CH3, CH2, CF3, and CF2 groups is possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.