Abstract
In the beginning of the 1950s, Wigner introduced a fundamental deformation from the canonical quantum mechanical harmonic oscillator, which is nowadays sometimes called a Wigner quantum oscillator or a parabose oscillator. Also, in quantum mechanics the so-called Wigner distribution is considered to be the closest quantum analogue of the classical probability distribution over the phase space. In this paper, we consider which definition for such a distribution function could be used in the case of non-canonical quantum mechanics. We then explicitly compute two different expressions for this distribution function for the case of the parabose oscillator. Both expressions turn out to be multiple sums involving (generalized) Laguerre polynomials. Plots then show that the Wigner distribution function for the ground state of the parabose oscillator is similar in behaviour to the Wigner distribution function of the first excited state of the canonical quantum oscillator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.