Abstract

NGC 6397 is one of the most interesting, well observed and theoretically studied globular clusters. The existing wealth of observations allows us to study the reliability of the theoretical white dwarf cooling sequences of low metallicity progenitors,to determine its age and the percentage of unresolved binaries, and to assess other important characteristics of the cluster, like the slope of the initial mass function, or the fraction of white dwarfs with hydrogen deficient atmospheres. We present a population synthesis study of the white dwarf population of NGC 6397. In particular, we study the shape of the color-magnitude diagram, and the corresponding magnitude and color distributions. We do this using an up-to-date Monte Carlo code that incorporates the most recent and reliable cooling sequences and an accurate modeling of the observational biases. We find a good agreement between our theoretical models and the observed data. In particular, we find that this agreement is best for those cooling sequences that take into account residual hydrogen burning. This result has important consequences for the evolution of progenitor stars during the thermally-pulsing asymptotic giant branch phase, since it implies that appreciable third dredge-up in low-mass, low-metallicity progenitors is not expected to occur. Using a standard burst duration of 1.0 Gyr, we obtain that the age of the cluster is 12.8+0.50-0.75 Gyr. Larger ages are also compatible with the observed data, but then realistic longer durations of the initial burst of star formation are needed to fit the luminosity function. We conclude that a correct modeling of the white dwarf opulation of globular clusters, used in combination with the number counts of main sequence stars provides an unique tool to model the properties of globular clusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.