Abstract
In this paper we study the well-posedness of the Cauchy problem for first order hyperbolic systems with constant multiplicities and with low regularity coefficients depending just on the time variable. We consider Zygmund and log-Zygmund type assumptions, and we prove well-posedness in H∞ respectively without loss and with finite loss of derivatives. The key to obtain the results is the construction of a suitable symmetrizer for our system, which allows us to recover energy estimates (with or without loss) for the hyperbolic operator under consideration. This can be achievied, in contrast with the classical case of systems with smooth (say Lipschitz) coefficients, by adding one step in the diagonalization process, and building the symmetrizer up to the second order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.