Abstract

The volatile organic compounds (VOCs) produced by soil microbes modulated plant growth and development. Floccularia luteovirens, an edible mushroom, is beneficial to the growth of alpine meadow plants on the Qinghai-Tibet Plateau. We aimed to elucidate the physiological and molecular mechanisms underlying the mushroom fungal VOC-mediated plant growth and development. Here, we investigated the effects of VOCs produced by F. luteovirens on the root system development and seedling growth by integrating physiology, genetics, transcriptome and metabolome analysis using 1/2 MS medium-grown Arabidopsis thaliana seedlings. Treatment with F. luteovirens VOCs reduce primary root growth by aggravating auxin accumulation through the repression of the abundance of auxin efflux carrier PIN-FORMED 2 (PIN2) protein, whereas it increases the lateral root number of A. thaliana seedlings. In addition to modulating root system architecture, treatment with F. luteovirens VOCs markedly increased aboveground growth. The transcriptome and metabolome analyses further supported the notion that F. luteovirens VOCs modulate plant growth and development through the induction of carbon/nitrogen metabolism and antioxidant defense while repressing several secondary metabolism and amino acid catabolism pathways. These results suggested that application of F. luteovirens VOCs promote growth by inducing changes in root system architecture through auxin pathway and regulating metabolism in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.