Abstract

Abstract This paper presents the viscoelastic analytical solution for stress and displacement due to prescribed time-varying changes in the pore fluid pressure of a disk-shaped inclusion embedded within a semi-infinite, viscoelastic medium. The correspondence principle of viscoelasticity, along with Hankel–Fourier and Laplace transforms, is used to derive the solution. The instantaneous viscoelastic solution, corresponding to the response immediately after the inclusion pore pressure change, recovers the elastic solution to the same problem (Geertsma 1973). Results are presented for fractional Maxwell and Burgers models of viscoelasticity after being applied to a set of experimental data from creep tests on shale. Solution results are demonstrated and discussed for the cases of constant inclusion depletion, as well as delayed injection of fluid into a previously depleted inclusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.