Abstract
The present review paper has several objectives. Its primary aim is to give an idea of the general features of virtual element methods (VEMs), which were introduced about a decade ago in the field of numerical methods for partial differential equations, in order to allow decompositions of the computational domain into polygons or polyhedra of a very general shape.Nonetheless, the paper is also addressed to readers who have already heard (and possibly read) about VEMs and are interested in gaining more precise information, in particular concerning their application in specific subfields such as ${C}^1$ -approximations of plate bending problems or approximations to problems in solid and fluid mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.