Abstract

In this paper, we discuss the computational complexity of the following enumeration problem: given a rational convex polyhedron P defined by a system of linear inequalities, output each vertex of P. It is still an open question whether there exists an algorithm for listing all vertices in running time polynomial in the input size and the output size. Informally speaking, a linear running time in the output size leads to the notion of P-enumerability introduced by Valiant (1979). The concept of strong P-enumerability additionally requires an output independent space complexity of the respective algorithm. We give such an algorithm for polytopes all of whose vertices are among the vertices of a polytope combinatorially equivalent to the hypercube. As a very important special case, this class of polytopes contains all 0 1 -polytopes. Our implementation based on the commercial LP solver CPLEX is superior to general vertex enumeration algorithms. We give an example how simplifications of our algorithm lead to efficient enumeration of combinatorial objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.