Abstract
Feed and water components may interact with drugs and affect their dissolution and bioavailability. The impact of the vehicle of administration (feed and water) and the prandial condition of weaner piglets on amoxicillin´s oral bioavailability was evaluated. First, amoxicillin's in vitro dissolution and stability in purified, soft, and hard water, as well as release kinetics from feed in simulated gastric and intestinal media were assessed. Then, pharmacokinetic parameters and bioavailability were determined in fasted and fed pigs using soft water, hard water, or feed as vehicles of administration following a balanced incomplete block design. Amoxicillin showed similar dissolution profiles in soft and hard water, distinct from the dissolution profile obtained with purified water. Complete dissolution was only achieved in purified water, and merely reached 50% in soft or hard water. Once dissolved, antibiotic concentrations decreased by around 20% after 24h in all solutions. Korsmeyer-Peppas model best described amoxicillin release from feed in simulated gastric and intestinal media. Feed considerably reduced antibiotic dissolution in both simulated media. In vivo, amoxicillin exhibited significantly higher bioavailability when delivered via water to fasted than to fed animals, while in-feed administration yielded the lowest values. All treatments showed a similar rate of drug absorption. In conclusion, we demonstrated that water and feed components, as well as feed present in gastrointestinal tract of piglets decrease amoxicillin´s oral bioavailability. Therefore, the use of oral amoxicillin as a broad-spectrum antibiotic to treat systemic infections in pigs should be thoroughly revised.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.