Abstract

We investigated the correlation between the therapeutic effect by early irradiation Photodynamic Therapy (PDT) and vascular response. The early irradiation PDT has been proposed by our group. This PDT protocol is that pulse laser irradiates to tumors 1 h after intravenous injection of water-soluble photosensitizer. The intact layer appeared over the well treated layer, when the early irradiation PDT was performed at rat prostate subcutaneous tumors with high intensity pulse laser (over 1 MW/cm2 in peak intensity) and Talaporfin sodium. In order to clarify the phenomenon mechanism, we monitored blood volume, surface temperature, photosensitizer amount, and oxygen saturation during the PDT. The rat prostate subcutaneous tumor was irradiated with excimer dye laser light at 1 h after the intravenous injection. The photosensitizer dose wa 2.0 mg/kg, and the pulse energy density was 2.5 mJ/cm2 (low intensity) or 10 mJ/cm2 (high intensity). Under the low intensity pulsed PDT, the fluorescence amount was decreasing gently during the irradiation, and the blood volume and oxygen saturation started decreasing just after the irradiation. Under the hgh intensity pulsed PDT, the fluorescence amount was decreaased rapidly for 20 s after the irradiation started. The blood volume and oxygen saturation were temporally decreased during the irradiation, and recovered at 48 hrs after the irradiation. According to these results, under the low intensity pulsed PDT, the blood vessel located near the surface started closing just after the irradiation. On the other hand, under the high intensity pulsed PDT the blood vessel was closing for 20 s after the irradiation started, moreover, the blood flow recovered at 48 hrs after the irradiation. We concluded that the vascular response depended on the pulse energy density, and then the therapeutic effect was attributed to the difference of the vascular response. In other words, the surface intact layer could be considered to be induced the temporal drug and oxygen depletion effect associated with the temporal vascular shutdown.© (2008) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.