Abstract

Molecular dynamics simulations were performed to determine two-phase configurations of model propane molecules below the critical point and in the near-critical, two-phase region. A postprocessor that uses a Monte Carlo method for determination of volumes attributable to each molecule was used to obtain density histograms of the particles from which the bulk coexisting equilibrium vapor and liquid densities were determined. This method of analyzing coexisting densities in a two-phase simulation is straightforward and can be easily implemented for complex, multisite models. Various degrees of internal flexibility in the propane models have little effect on the coexisting densities at temperatures 40 K or more below the critical point, but internal flexibility (angle bending and bond vibrations) does affect the saturated liquid densities in the near-critical region, changing the critical temperature by approximately 20 K. Shorter cutoffs were also found to affect the phase dome and the location of the critical point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.