Abstract
Most automobile insurance databases contain a large number of policyholders with zero claims. This high frequency of zeros may reflect the fact that some insureds make little use of their vehicle, or that they do not wish to make a claim for small accidents in order to avoid an increase in their premium, but it might also be because of good driving. We analyze information on exposure to risk and driving habits using telematics data from a pay-as-you-drive sample of insureds. We include distance traveled per year as part of an offset in a zero-inflated Poisson model to predict the excess of zeros. We show the existence of a learning effect for large values of distance traveled, so that longer driving should result in higher premiums, but there should be a discount for drivers who accumulate longer distances over time due to the increased proportion of zero claims. We confirm that speed limit violations and driving in urban areas increase the expected number of accident claims. We discuss how telematics information can be used to design better insurance and to improve traffic safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.