Abstract

The aim of the research was to determine the effectiveness of removing micro-organic pollutants, including PAHs, using the modified Fenton method. The tested material was pretreated coke wastewater, in which the initial chemical oxygen demand (COD) value and initial polycyclic aromatic hydrocarbons (PAHs) concentration were determined. The samples were then subjected to an oxidation procedure. Before the process, the pH was adjusted to 3.5–3.8. Next, the following doses of sodium carbonate—hydrogen peroxide (2/3): 1.2 g/L, 1.5 g/L and 2 g/L, and a constant dose of iron sulphate were added. The next step was exposing the samples to UV light for 6 min and separating the organic matrix from the samples of wastewater. After the tests, the final value of the COD and the final PAHs concentration were determined. The average content of organic pollutants in pretreated coke wastewater determined by the COD index was 538 mg/L, and after the oxidation process, the COD index decreased in the range from 9 to 29%. The efficiency of the degradation of the sum of 16 PAHs was varied and was in the range of 94–97.6%. The research results show that sodium carbonate—hydrogen peroxide (2/3) can be used for the degradation of organic pollutants, such as PAHs, in the modified Fenton process.

Highlights

  • The main source of organic micro-pollution in water environment is industrial sewage, especially coke wastewater

  • The average content of micro-organic pollutants in pretreated coke wastewater determined by the chemical oxygen demand (COD) index was 538 mg/L, and after the oxidation process, the COD index decreased from 9 to 29%

  • The changes in the concentration for all analyzed polycyclic aromatic hydrocarbons (PAHs) are shown on Figure 1

Read more

Summary

Introduction

The main source of organic micro-pollution in water environment is industrial sewage, especially coke wastewater. Phenol index mg O2/dm mg C/dm mg C/dm mg/dm. Polycyclic aromatic hydrocarbons (PAHs), together with other compound such as ethers, alcohols, glycols, aliphatic and aromatic amines and phenols, belong to the group of organic micropollutants. Due to high resistance to conventional degradation processes, they are classified as persistent organic pollutants [4]. For this reason, new techniques are being sought out to efficiently remove these compounds. The Fenton process belongs to the advanced oxidation process (AOP) [5]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.