Abstract

Scale recursive estimation (SRE) is adopted for short term quantitative precipitation forecast (QPF). The precipitation field is modelled using a lognormal random cascade, well suited to properly represent the scaling properties of rainfall fields. To estimate the random cascade parameters, scale recursive maximum likelihood estimation (MLE) is carried out by the iterative expectation maximization (EM) algorithm. To illustrate the potentiality of the SRE, forecast of a synthetically generated rainfall time series is shown. Adaptive estimation of the process parameters is carried out and precipitation forecasts are issued. The forecasts from the SRE are compared with those from standard ARMA models, showing a good performance. The SRE is then adopted for forecasting of an observed half hourly precipitation series for a two day storm event in northern Italy. The SRE provides good performance and it can therefore be adopted as a tool for short term QPF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.