Abstract

We determine the minimal degree permutation representations of all finite groups with trivial soluble radical, and describe applications to structural computations in large finite matrix groups that use the output of the CompositionTree algorithm. We also describe how this output can be used to help find an effective base and strong generating set for such groups. We have implemented the resulting algorithms in Magma, and we report on their performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.