Abstract

Juveniles of Solea solea were sampled during the spring season in three consecutive years at a marine site by the mouth of the Ebre river. The aim was to assess if the extractive works from the toxic load upstream the river could be reflected on the health status of the fish living at the immediate sea. The biomarkers selected for the in vivo field study are commonly used as indicators of chemical exposures. They include activities of energy metabolism: lactate dehydrogenase (LDH) and citrate synthase (CS); neurotoxicity: cholinesterases (ChE); xenobiotic metabolism: cytochrome P450 (CYP)-dependent: EROD and BFCOD, carboxylesterase (CbE), glutathione S-transferase (GST) and uridine diphosphate glucuronyltransferase (UDPGT); and oxidative stress parameters such as catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPX) as well as levels of lipid peroxidation (LPO). These biomarkers were mostly analysed in liver but also in gills and muscle depending on their particular tissue distribution and role. A complementary in vitro approach was also sought to see the capacity of common emerging contaminants (pharmaceuticals and personal care products; PPCPs) to interact with the liver microsomal detoxification system of the fish (EROD, BFCOD and CbE activities). The results indicated that in fish sampled in 2015 there was an enhancement in detoxification parameters (EROD, BFCOD and gill GR), muscular ChEs and gill CS, but a decrease in CbE activity and a marked oxidative stress situation (increased LPO and decreased CAT activity). Also, 4 out of the 10 PPCPs tested in vitro were able to interact with the CYP3A4 (BFCOD) enzymatic system while the lipid regulators simvastatin and fenofibrate inhibited CbE activity, as it occurs in higher vertebrates. The in vivo results support the use of a multibiomarker approach when assessing the disturbances due to chemical exposures, not only spatially but also over time, once the influence of other variables has been taken into consideration. The in vitro results highlight the importance of the CYP3A4 and CbE pathway in pharmaceutical metabolism, also in fish.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.