Abstract

The realization of three-dimensional (3D) degradable matrices which slowly release bio-active components represents a major challenge in the field of tissue engineering. In this paper we report on the usage of commercially available bifunctional agents for both the covalent coupling of proteins to and the cross-linking of collagen matrices. Proteins - horse radish peroxidase (HRP) was used as a model protein - were cross-linked with either a homobifunctional (disuccinimidyldisuccinatepolyethylene-glycol) or a heterobifunctional (N-hydroxysuccinimidylvinylsulfonepolyethyleneglycol) agent. In the case of the heterobifunctional cross-linking agent the collagen matrices were previously modified with succinimidylacetylthioacetate in order to introduce sulfhydryl groups. As compared with control experiments a 10-fold and 50-fold increase of immobilized proteins were achieved with the homobifunctional and heterobifunctional cross-linker resp. The HRP-PEG conjugates demonstrated a better long-term stability as compared to the non-treated HRP. The effects of the cross-linking agents and the thiolation reagent succinimidylacetylthio acetate on the in vitro degradation of the collagen matrices by collagenase were also investigated. In particular the reaction with succinimidylacetylthio acetate appears to offer interesting opportunities both for coupling active proteins and modulating the degradation times of collagen matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.