Abstract

A statistical mechanical perturbation theory for the pair correlation function and thermodynamic properties of molecular fluids is presented in which the reference potential function is non-spherical. With this choice the short-range molecular repulsive forces can be properly taken into consideration and attractive forces, such as those resulting from electric moments, treated as the perturbation. Calculations are presented for the first-order perturbation term to the Helmholtz free energy due to quadrupolar forces in models of liquid nitrogen and chlorine, and due to dipolar forces in liquid hydrogen chloride. For these calculations the rigid diatomic model and its modification appropriate to heteronuclear molecules were used for the reference potentials. It is found that the lowest-order perturbation terms here are proportional to the second power of the dipole or quadrupole moments, and not the fourth power as had been found previously using a spherical reference potential function. This second-order d...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.