Abstract
Aim: In real-time control of prosthesis, orthosis, and human–computer interface applications, the displacement of surface electrodes may cause a total disruption or a decline in the classification rates. In this study, a constrained independent component analysis (cICA) was used as an alternative method for addressing the displacement problem of surface electrodes. Materials and Methods: The study was tested by classifying six-hand gestures offline and in real-time to control a robotic arm. The robotic arm has five degrees of freedom, and it was controlled using surface electromyography (sEMG) signals. The classification of sEMG signals is realized using artificial neural networks. cICA algorithm was utilized to improve the performance of classifiers due to the negative effect of electrode displacement issues. Results: In the study, the classification results of the cICA applied and unapplied sEMG signals were compared. The results showed that the proposed method has provided an increase between 4% and 13% in classifications. The average classification rates for six different hand gestures were calculated as 96.66%. Conclusions: The study showed that the cICA method enhances classification rates while minimizing the impact of electrode displacement. The other advantage of the cICA algorithm is dimension reduction, which is important in real time applications. To observe the performance of the cICA in the real-time application, a robotic arm was controlled using sEMG signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.