Abstract

The problem of determining the unsatisfiability threshold for random 3-SAT formulas consists in determining the clause to variable ratio that marks the experimentally observed abrupt change from almost surely satisfiable formulas to almost surely unsatisfiable. Up to now, there have been rigorously established increasingly better lower and upper bounds to the actual threshold value. In this paper, we consider the problem of bounding the threshold value from above using methods that, we believe, are of interest on their own right. More specifically, we show how the method of local maximum satisfying truth assignments can be combined with results for the occupancy problem in schemes of random allocation of balls into bins in order to achieve an upper bound for the unsatisfiability threshold less than 4.571. In order to obtain this value, we establish a bound on the q-binomial coefficients (a generalization of the binomial coefficients). No such bound was previously known, despite the extensive literature on q-binomial coefficients. Finally, to prove our result we had to establish certain relations among the conditional probabilities of an event in various probabilistic models for random formulas. It turned out that these relations were considerably harder to prove than the corresponding ones for unconditional probabilities, which were previously known.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.