Abstract
The full configuration interaction method in the space of fractionally occupied unrestricted natural orbitals (UNO-CAS method) is extended to excited states as well as to strongly correlated and reactive systems with large active spaces. This is accomplished by␣using restricted active space (RAS) wave functions introduced by Olsen et al. [(1988) J Chem Phys 89: 2185] and using the UNOs without the expensive orbital optimization step. In RAS, the space of active orbitals is subdivided into three groups: a group with essentially doubly occupied orbitals (RAS1), the usual CAS space (RAS2), and a space with weakly occupied active orbitals (RAS3). We select these spaces on the basis of the occupation numbers of the UNOs. All possible electron distributions are allowed in the usual CAS space, but the number of vacancies is limited in RAS1 and the number of electrons is limited in RAS3. We discuss an efficient algorithm for generating a RAS wave function. This is based on the Handy-Knowles determinantal expansion with an addressing scheme adopted for the restricted expansion. Results for both ground and excited states of azulene and free base porphyrin are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.