Abstract
Graphene is one of the most promising two-dimensional nanomaterials with broad applications in many fields. However, the variations and fluctuations in the material and geometrical properties are challenging issues that require more concern. In order to quantify uncertainty and analyze the impacts of uncertainty, a stochastic finite element model (SFEM) is proposed to propagate uncertainty for carbon atomic interactions under resonant vibration. Compared with the conventional truss or beam finite element models, both carbon atoms and carbon covalent bonds are considered by introducing plane elements. In addition, the determined values of the material and geometrical parameters are expanded into the related interval ranges with uniform probability density distributions. Based on the SFEM, the uncertainty propagation is performed by the Monte Carlo stochastic sampling process, and the resonant frequencies of graphene are provided by finite element computation. Furthermore, the correlation coefficients of characteristic parameters are computed based on the database of SFEM. The vibration modes of graphene with the extreme geometrical values are also provided and analyzed. According to the computed results, the minimum and maximum values of the first resonant frequency are 0.2131 and 16.894 THz, respectively, and the variance is 2.5899 THz. The proposed SFEM is an effective method to propagate uncertainty and analyze the impacts of uncertainty in the carbon atomic interactions of graphene. The work in this paper provides an important supplement to the atomic interaction modeling in nanomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.