Abstract

BackgroundUrothelial bladder cancer is a highly heterogeneous disease. Cancer cell lines are useful tools for its study. This is a comprehensive genomic characterization of 40 urothelial bladder carcinoma (UBC) cell lines including information on origin, mutation status of genes implicated in bladder cancer (FGFR3, PIK3CA, TP53, and RAS), copy number alterations assessed using high density SNP arrays, uniparental disomy (UPD) events, and gene expression.ResultsBased on gene mutation patterns and genomic changes we identify lines representative of the FGFR3-driven tumor pathway and of the TP53/RB tumor suppressor-driven pathway. High-density array copy number analysis identified significant focal gains (1q32, 5p13.1-12, 7q11, and 7q33) and losses (i.e. 6p22.1) in regions altered in tumors but not previously described as affected in bladder cell lines. We also identify new evidence for frequent regions of UPD, often coinciding with regions reported to be lost in tumors. Previously undescribed chromosome X losses found in UBC lines also point to potential tumor suppressor genes. Cell lines representative of the FGFR3-driven pathway showed a lower number of UPD events.ConclusionsOverall, there is a predominance of more aggressive tumor subtypes among the cell lines. We provide a cell line classification that establishes their relatedness to the major molecularly-defined bladder tumor subtypes. The compiled information should serve as a useful reference to the bladder cancer research community and should help to select cell lines appropriate for the functional analysis of bladder cancer genes, for example those being identified through massive parallel sequencing.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1450-3) contains supplementary material, which is available to authorized users.

Highlights

  • Urothelial bladder cancer is a highly heterogeneous disease

  • A clinically relevant issue is the level of invasion of the bladder wall: tumors are classified as non-muscle invasive (NMIBC, Ta, carcinoma in situ, and T1) or muscle-invasive (MIBC, ≥T2)

  • We report here a detailed genomic analysis of a large set of urothelial bladder carcinoma (UBC) cell lines in order to improve their use as models for the study of this tumor type

Read more

Summary

Introduction

Urothelial bladder cancer is a highly heterogeneous disease. Urothelial bladder cancer (UBC) has a high incidence, with 133,696 new cases and 51,056 deaths from UBC in Europe in 2011 [1] and a high prevalence due to the fact that it is commonly an indolent disease. A clinically relevant issue is the level of invasion of the bladder wall: tumors are classified as non-muscle invasive (NMIBC, Ta, carcinoma in situ, and T1) or muscle-invasive (MIBC, ≥T2). Patients with high-grade NMIBC, and those with MIBC, have an aggressive disease that can lead to patient’s death, emphasizing the need to better classify these tumor subgroups

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.