Abstract

We have designed de novo a two-stranded alpha-helical coiled-coil which consists of two identical 35-residue polypeptide chains arranged in a parallel and in-register alignment. Their structure is stabilized by interchain hydrophobic interactions from hydrophobes at positions "a" and "d" of a repeating heptad sequence. The formation and stability of the coiled-coil is dependent on peptide concentration due to the monomer-dimer equilibrium. In contrast, that coiled-coil containing an inter-helical disulfide bond does not show any concentration dependence in the guanidine hydrochloride denaturation experiments as expected. Replacement of one large hydrophobic Leu residue in each chain with Ala significantly decreases coiled-coil stability in both the reduced and oxidized coiled-coils [decreases in transition midpoint of 1.6M (2.3-0.7) and 2.4M (5.3-2.9), respectively]. A large pH dependence on coiled-coil stability is observed over the pH range 4 to 7 (transition midpoints at pH 4, 5, 5.5, 6 and 7 were 3.8, 3.2, 2.0, 1.2 and 0.7M, respectively). The increasing stability with decreasing pH correlates with the protonation of the Glu acid side-chains and reduction of intrachain repulsions between Glu-Glu side-chains in positions i, i + 3 or i, i + 4 along each alpha-helix of the coiled-coil. In addition, coiled-coil stability increases with increasing ionic strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.