Abstract

The CCAAT-binding factor CBF is a heterotrimeric transcription factor that specifically binds to CCAAT sequences in many eukaryotic genes. Previous studies have shown that CBF contains two transcription activation domains: a glutamine-rich, serine-threonine-rich domain present in the CBF-B subunit and a glutamine-rich domain in the CBF-C subunit. In this study, by using a series of deletion mutations of CBF-B and CBF-C in transcription assay in vitro, we further delineated smaller segments in these domains that were sufficient to support transcriptional activation by CBF. To test whether transcription activation by CBF requires co-activators, we examined the interaction between CBF and dTAF110, a component of the Drosophila TFIID complex. Recent work has demonstrated that glutamine-rich domains of the Sp1 transcription factor interact with dTAF110 and that this interaction has an important role in mediating transcription activation. Here we first demonstrate in a direct interaction assay in vitro that CBF binds dTAF110. By using a yeast two-hybrid system we show that both of the transcription activation domains of CBF interact with dTAF110. A deletion analysis suggests that a segment of CBF-B needed for transcription activation is also involved in interaction with dTAF110. In CBF-C the C-terminal portion of the molecule seems to be needed for these two activities. Our results suggest that TAF110 might represent one of the co-activators that mediate transcriptional activation by CBF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.