Abstract

The Rotational Phase Separator (RPS) is a device to separate liquid or solid particles from a lighter or heavier fluid by centrifugation in a bundle of channels which rotate around a common axis. Originally, the RPS was designed in such a way that the flow through the channels is laminar in order to avoid eddies in which the particles become entrained and do not reach the walls. However, in some applications the required volume flow of fluid is so large, that the Reynolds number exceeds the value for which laminar Poiseuille flow is linearly stable. Depending on the Reynolds numbers the flow can then be turbulent, or a laminar time-dependent flow results. In both cases a counter-rotating vortex is present, which might deteriorate the separation efficiency of the RPS. This is studied by means of direct numerical simulation of flow in a rotating pipe and particle tracking in this flow. The results show that the collection efficiency for larger particles decreases due to the combined action of the vortex and turbulent velocity fluctuations, while it is unchanged for smaller particles.KeywordsReynolds NumberDirect Numerical SimulationTangential VelocityHigh Reynolds NumberTurbulent VelocityThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.