Abstract
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, is primarily localized to a subpopulation of primary sensory neurons of the trigeminal, vagal, and dorsal root ganglia. This subset of nociceptors produces and releases the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP), which mediate neurogenic inflammatory responses. TRPA1 is activated by a number of exogenous compounds, including molecules of botanical origin, environmental irritants, and medicines. However, the most prominent feature of TRPA1 resides in its unique sensitivity for large series of reactive byproducts of oxidative and nitrative stress. Here, the role of TRPA1 in models of different types of pain, including inflammatory and neuropathic pain and migraine, is summarized. Specific attention is paid to TRPA1 as the main contributing mechanism to the transition of mechanical and cold hypersensitivity from an acute to a chronic condition and as the primary transducing pathway by which oxidative/nitrative stress produces acute nociception, allodynia, and hyperalgesia. A series of migraine triggers or medicines have been reported to modulate TRPA1 activity and the ensuing CGRP release. Thus, TRPA1 antagonists may be beneficial in the treatment of inflammatory and neuropathic pain and migraine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.