Abstract

Abstract Inland tropical cyclone (TC) impacts due to high winds and rainfall-induced flooding depend strongly on the evolution of the wind field and precipitation distribution after landfall. However, research has yet to test the detailed response of a mature TC and its hazards to changes in surface forcing in idealized settings. This work tests the transient responses of an idealized hurricane to instantaneous transitions in two key surface properties associated with landfall: roughening and drying. Simplified axisymmetric numerical modeling experiments are performed in which the surface drag coefficient and evaporative fraction are each systematically modified beneath a mature hurricane. Surface drying stabilizes the eyewall and consequently weakens the overturning circulation, thereby reducing inward angular momentum transport that slowly decays the wind field only within the inner core. In contrast, surface roughening initially (~12 h) rapidly weakens the entire low-level wind field and enhances the overturning circulation dynamically despite the concurrent thermodynamic stabilization of the eyewall; thereafter the storm gradually decays, similar to drying. As a result, total precipitation temporarily increases with roughening but uniformly decreases with drying. Storm size decreases monotonically and rapidly with surface roughening, whereas the radius of maximum wind can increase with moderate surface drying. Overall, this work provides a mechanistic foundation for understanding the inland evolution of real storms in nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.