Abstract
In this work the anomalous diffusion in the quenched trap model with diverging mean waiting times is examined. The approach of randomly stopped time is extensively applied in order to obtain asymptotically exact representation of the disorder averaged positional probability density function. We establish that the dimensionality and the geometric properties of the lattice, on top of which the disorder is imposed, dictate the plausibility of the approximation that only includes annealed disorder. Specifically, for any case when the probability to return to the origin (Q0) is less than 1, i.e. the transient case, the quenched trap model can be mapped on to the continuous time random walk. The explicit form of the mapping is provided. In the case when an external force is applied on a tracer particle in a media described by the quenched trap model, the response to such force is calculated and a non-linear response for sufficiently low dimensionality is observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.