Abstract

A unilateral activation of the mesencephalic locomotor region (MLR) produces symmetrical bilateral locomotion in all vertebrate species tested to date. How this occurs remains unresolved. This study examined the possibility that the symmetry occurred at the level of the inputs from the MLR to reticulospinal (RS) cells. In lamprey semi-intact preparations, we recorded intracellular responses of pairs of large, homologous RS cells on both sides to stimulation of the MLR on one side. The synaptic responses on both sides were very similar in shape, amplitude, and threshold intensity. Increasing MLR stimulation intensity produced a symmetrical increase in the magnitude of the responses on both sides. Ca(2+) imaging confirmed the bilateral activation of smaller-sized RS cells as well. In a high-divalent cation solution, the synaptic responses of homologous RS cells persisted and exhibited a constant latency during high-frequency stimulation. Moreover, during gradual replacement of normal Ringer's solution with a Ca(2+)-free solution, the magnitude of responses showed a gradual reduction with a similar time course in the homologous RS cells. These results support the idea that the MLR projects monosynaptically to RS cells on both sides with symmetrical inputs. During locomotion of the semi-intact preparation, the discharge pattern was also very similar in homologous bilateral RS cells. Anatomical experiments confirmed the presence of MLR neurons projecting ipsilaterally to the reticular formation intermingled with neurons projecting contralaterally. We conclude that the bilaterally symmetrical MLR inputs to RS cells are likely contributors to generating symmetrical locomotor activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.