Abstract
Release of distinct cellular cargoes in response to specific stimuli is a process fundamental to all higher eukaryotes and controlled by the regulated secretory pathway (RSP). However, the mechanism by which genes involved in the RSP are selectively expressed, leading to the establishment and appropriate functioning of regulated secretion remaining largely unknown. Using the rat pheochromocytoma cell line PC12, we provide evidence that, by controlling expression of many genes involved in the RSP, the transcriptional repressor REST can regulate this pathway and hence the neurosecretory phenotype. Introduction of REST transgenes into PC12 cells leads to the repression of many genes, the products of which are involved in regulated secretion. Moreover, chromatin immunoprecipitation assays show that many of the repressed genes recruit the recombinant REST protein to RE1 sites within their promoters and abrogation of REST function leads to reactivation of these transcripts. In addition to the observed transcriptional effects, PC12 cells expressing REST have fewer secretory granules and a reduction in the ability to store and release noradrenaline. Furthermore, an important trigger for synaptic release, influx of calcium through voltage-operated calcium channels, is compromised. This is the first demonstration of a transcription factor that directly controls expression of many major components of the RSP and provides further insight into the function of REST.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.