Abstract

The zinc finger-containing transcription factors GATA4 and GATA6 are important regulators of basal and inducible gene expression in cardiac and smooth muscle cell types. Here we demonstrate a direct functional role for GATA4 and GATA6 as regulators of cardiomyocyte hypertrophic growth and gene expression. To model the increase in endogenous GATA4 and GATA6 transcriptional activity that occurs in response to hypertrophic stimulation, each factor was overexpressed in cardiomyocytes using recombinant adenovirus. Overexpression of either GATA4 or GATA6 was sufficient to induce cardiomyocyte hypertrophy characterized by enhanced sarcomeric organization, a greater than 2-fold increase in cell surface area, and a significant increase in total protein accumulation. In vivo, transgenic mice with 2.5-fold overexpression of GATA4 within the adult heart demonstrated a slowly progressing increase in heart to body weight ratio, histological features of cardiomyopathy, and activation of hypertrophy-associated genes, suggesting that GATA factors are sufficient regulators of cardiomyocyte hypertrophy in vitro and in vivo. To evaluate the requirement of GATA factors as downstream transcriptional mediators of hypertrophy, a dominant negative GATA4-engrailed repressor fusion-encoding adenovirus was generated. Expression of GATA4-engrailed blocked GATA4- and GATA6-directed transcriptional responses and agonist-induced cardiomyocyte hypertrophy, demonstrating that cardiac-expressed GATA factors are necessary mediators of this process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.