Abstract
We show that with probability 1, the trace B[0, 1] of Brownian motion in space, has positive capacity with respect to exactly the same kernels as the unit square. More precisely, the energy of occupation measure on B[0, 1] in the kernel f(∣x−y∣), is bounded above and below by constant multiples of the energy of Lebesgue measure on the unit square. (The constants are random, but do not depend on the kernel.) As an application, we give almost-sure asymptotics for the probability that an α-stable process approaches within ɛ of B[0, 1], conditional on B[0, 1]. The upper bound on energy is based on a strong law for the approximate self-intersections of the Brownian path. We also prove analogous capacity estimates for planar Brownian motion and for the zero-set of one-dimensional Brownian motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.