Abstract

Polo-like kinase 1 (Plk1) is a mitotic kinase that has multiple functions throughout the cell cycle. Catalytic activation of Plk1 is known to be regulated by phosphorylation of the kinase domain, including Thr210, and by releasing the kinase domain from its inhibitory polo-box domain. However, how Plk1 is activated to fulfill its proper roles, in time and space, is not well understood. In this study, we unintentionally found that the expression of a constitutively active form of human Plk1 is toxic to bacterial cells, such that cells contained point mutations that alleviate the kinase activity. Structural prediction revealed that these mutations are adjacent to the amino acids supporting the kinase activity. When human cells express these mutants, we found decreased levels of Plk1's substrate phosphorylation, resulting in mitotic defects. Moreover, unlike in bacterial cells, the expression of activated Plk1 mutants did not affect cell proliferation in human cells unless localized at the right place in mitosis. Our observations identified new suppressor mutations and underscored the importance of spatiotemporal regulation in Plk1, providing a basis for how we might intervene in this kinase for therapeutic purpose in human cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.