Abstract

The distributions of benzpyrene monooxygenase and epoxide hydratase in subfractions of liver microsomes from control and from phenobarbital- and methylcholanthrene-treated rats have been investigated. The specific activities of these enzymes in rough and smooth microsomes from control and phenobarbital-treated animals are approximately the same, whereas after methyl-cholanthrene treatment benzpyrene monooxygenase is four times higher and epoxide hydratase twice as high in the rough vesicles. Further subfractionation of rough and smooth microsomes by rate differential centrifugation revealed the distributions of both enzymes among microsomal vesicles to be highly heterogeneous. Comparison of these distributions leads to the conclusion that the benzpyrene monooxygenase system and epoxide hydratase may form a complex of unique stoichiometry in the membrane of microsomes from control rats, but that such a complex is not consistent with the distributions obtained after methylcholanthrene induction. Studies with proteases and the non-penetrating chemical reagent diazobenzene sulfonate suggest that epoxide hydratase may be buried deeply in the hydrophobic phase of the membrane of the hepatic endoplasmic reticulum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.