Abstract

To study the elements involved in the pituitary specific transcriptional regulation of the tilapia prolactin I gene (tiPRL I), we have cloned and entirely sequenced a 3.4-kb genomic fragment immediately upstream from the first exon. In footprinting experiments, three tilapia sequences are protected from DNase I digestion by rat pituitary extracts (base pair coordinates -643 to -593, -160 to -111, and -73 to -46). Computer analysis of the nucleotide sequence reveals significant homology to mammalian binding sites for Pit-1, a transcription factor that is known to mediate pituitary-specific expression of the PRL genes in mammals. The tiPRL I 5'-flanking sequences can direct transient expression of a linked luciferase reporter gene in transfected rat pituitary cell lines and tilapia pituitary primary cell cultures. Transient expression experiments with 5'-deletion mutants reveal three regulatory regions. Two have a stimulatory effect on transcription and one an inhibitory effect. Electrophoretic mobility-shift assays (EMSA) demonstrate that the rat Pit-1 factor specifically binds to tilapia DNA sequences. Several such tilapia Pit-1 binding sites mediate activation of a linked heterologous promoter in transfected rat and tilapia pituitary cells. As evidenced by EMSA, a Pit-1-like protein is present in tilapia pituitary extracts. All these data point to a high conservation of the molecular mechanisms involved in pituitary-specific expression of the PRL genes in vertebrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.