Abstract

Enriched environment (EE) with a complex combination of sensorimotor, cognitive and social stimulations has been shown to enhance brain plasticity and improve recovery of functions in animal models of stroke. The present study extended these findings by assessing whether the three-phase EE intervention paradigm would improve neurovascular remodeling following ischemic stroke.Male Sprague-Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAO). A three-phase EE intervention paradigm was designed in terms of the different periods of cerebral ischemia by periodically rearranging the EE cage. Morris water maze (MWM) tests were performed to evaluate the learning and memory function. Multimodal MRI was applied to examine alterations to brain structures, intracranial vessels, and cerebral perfusion on the 31st day after MCAO. The changes of capillaries ultrastructure were examined by transmission electron microscope. Double-immunofluorescent staining was used to evaluate neurogenesis and angiogenesis. The expression of angiogenesis-related factors and neurovascular remodeling related signaling pathways including Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/glycogen synthase kinase-3 (GSK-3)/β-catenin and the axon guidance molecules were detected by Western blot analysis.MRI measurements revealed that EE treatment significantly increased survival volume of cortex and striatum, improved cerebral blood flow (CBF), amplified anterior azygos cerebral artery (azACA), ipsilateral internal carotid artery (ICA) and anterior communicating artery (AComA) vessel signal compared with standard housed rats (IS). Consistent with these findings, EE reduced ischemic BBB damage of capillary, enhanced endogenous angiogenesis and modified the expression of VEGF, Ang-1 or Ang-2 in ischemic rats. Additionally, this proangiogenic effect was consistent with the increased progenitor cell proliferation and neuronal differentiation in the peri-infarct cortex and striatum after EE intervention. Specifically, EE intervention paradigm markedly increased expression of phosphorylated PI3K, AKT and GSK-3, but reduced phosphorylated β-catenin. Moreover, the axon guidance proteins expression level was significant higher in EE group. In parallel to these findings, EE significantly enhanced recovery of lost spatial learning memory function in MCAO rats without affecting infarct size.Together, MRI findings along with histological results strongly supported that the three-phase EE paradigm benefited neurovascular reorganization and thereby improved poststroke cognitive function. Moreover, our findings suggest that this type of EE paradigm induced neurogenesis and angiogenesis, at least in part, via regulating PI3K/AKT/GSK-3/β-catenin signaling pathway and activation of the intrinsic axonal guidance molecules in animal models of ischemic stroke.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.