Abstract

ABSTRACT We introduce a new parameter λDS to quantify the dynamical state of galaxy clusters and test it using simulations from The Three Hundred cluster zoom suite. λDS is a combination of three previously used dynamical state measures, namely virial ratio, centre of mass offset, and substructure mass fraction, crafted to assume a double-Gaussian distribution, thereby yielding a natural division between relaxed and unrelaxed clusters where the Gaussians cross. Using dark matter-only simulations, we identify the optimal separator to be λDS = 3.424. We test this same criterion on two sets of fully hydrodynamical The Three Hundred runs (Gadget-X and GIZMO-SIMBA), and find only a weak dependence on the input baryonic physics. We correlate the evolution of λDS with the mass accretion history and find that halo mass changes of $\frac{\Delta M_{200}}{M_{200}} \lesssim 0.12$ do not typically alter the dynamical state. We examine the relaxation period, defined as the time taken to return to relaxation after becoming disturbed, and find a correlation between this relaxation period and the strength of halo mass change $\frac{\Delta M_{200}}{M_{200}}$. By fitting this correlation, we show that the relaxation period can be estimated from $\frac{\Delta M_{200}}{M_{200}}$ (even for multiple mass accretion events) with good accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.