Abstract

In the causal inference framework of Spirtes, Glymour, and Scheines (SGS), inferences about causal relationships are made from samples from probability distributions and a number of assumptions relating causal relations to probability distributions. The most controversial of these assumptions is the Causal Faithfulness Assumption, which roughly states that if a conditional independence statement is true of a probability distribution generated by a causal structure, it is entailed by the causal structure and not just for particular parameter values. In this paper we show that the addition of the Causal Faithfulness Assumption plays three quite different roles in the SGS framework: (i) it reduces the degree of underdetermination of causal structure by probability distribution; (ii) computationally, it justifies reliable (constraint-based) causal inference algorithms that would otherwise have to be slower in order to be reliable; and (iii) statistically, it implies that those algorithms reliably obtain the correct answer at smaller sample sizes than would otherwise be the case. We also consider a number of variations on the Causal Faithfulness Assumption, and show how they affect each of these three roles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.