Abstract

We prove local integral (entropy) estimates for nonnegative solutions of the fourth-order degenerate parabolic equation $$ u_t+ \div (u^n\nabla\Delta u)=0 $$ in space dimensions two and three. These estimates enable us to show that solutions have finite speed of propagation if $n\in(\frac 18,2)$ and that the support cannot shrink if the growth exponent $n$ is larger than $3/2$. In addition, we prove decay estimates for solutions of the Cauchy problem and a growth estimate for their support.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.