Abstract

The physical-chemical principles governing the interactions of enzymes having common metabolic products are presented. Methods for comparing the dissociation rates of the metabolic product and the rates of enzyme-enzyme interaction are given. Using muscle pyruvate kinase (PK) and creatine kinase (CK) as an example, it is shown that the probability of forming an enzyme-product-enzyme complex is much greater than the rate of ATP dissociation from either enzyme. Experimental evidence using 31P-NMR demonstrates that in the presence of both pyruvate kinase and creatine kinase, there is exchange of phosphate between phosphocreatine and phosphoenolpyruvate without a change in the intermediate, ATP. This confirms the formation of a PK.ATP.CK complex in an aqueous solution without enzyme attachment to a substructure. Enzymes capable of forming these mobile clusters are defined as diazymes, and the criteria for their formation are given. The metabolic implications of diazymes are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.